# 容器行业存储标准CSI与 Apache Mesos







© 2017 Mesosphere, Inc. All Rights Reserved.

# Who am I



- Apache Mesos PMC, Committer
- Tech Lead @Mesosphere
- Leading developments on
  Containerization in Mesos and DC/OS
- M.S. of Computer Engineering from University of California, Santa Barbara

#### Overview

- State of storage in Container Orchestrator today
- Benefits of standardization CSI
  - User perspective
  - Orchestrator perspective
  - Storage Provider perspective
- Overview of CSI
- Mesos overview
- Adopting container standards
- Highlighted new features
- Future roadmap



#### Background – user demand

Over the past 2 years there has been a huge shift involving *stateful* applications becoming a mainstream feature used by most container users.





### Background – container orchestrators

Popular container orchestrators have *independently* evolved storage interfaces













### Background – storage providers

# Selected open source and commercial vendors have solutions – sometimes usable across orchestrator platforms





### State of the world today

|    | А                | В              | с                      | D                 | Е                    |
|----|------------------|----------------|------------------------|-------------------|----------------------|
| 1  | Project Name 🛛 📼 | Containerize = | Northbound Interface = | Framework =       | Sponsor =            |
| 2  | AWS EBS          | Yes            | DVDI                   | REX-Ray           | {code} by Dell EMC   |
| 3  | AWS EBS          | No             | DVDI                   | Convoy            | Rancher              |
| 4  | AWS EBS          | No             | DVDI                   | OpenStorage       | Portworx             |
| 5  | AWS EBS          | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 6  | AWS EBS          | Yes            | K8s Flexv              | REX-Ray           | {code} by Dell EMC   |
| '  | AWO EFO          | res            | 0401                   | REA-Ray           | {code} by Dell Elvic |
| 8  | AWS EFS          | Yes            | K8s Flexv              | REX-Ray           | {code} by Dell EMC   |
| 9  | AWS EFS          | No             | DVDI                   |                   |                      |
| 10 | Azure Disk       | No             | DVDI                   | REX-Ray           | {code} by Dell EMC   |
| 11 | Azure Disk       | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 12 | Azure File       | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 13 | BeeGFS           | No             | DVDI                   |                   |                      |
| 14 | Block Bridge     | Yes            | DVDI                   |                   | Block Bridge         |
| 15 | BTRFS            | No             | DVDI                   | OpenStorage       | Portworx             |
| 16 | Buse             | No             | DVDI                   | OpenStorage       | Portworx             |
| 17 | Ceph             | No             | DVDI                   | Contiv            | Rancher              |
| 18 | CephFS           | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 19 | CephRBD          | Yes            | DVDI                   | REX-Ray           | {code} by Dell EMC   |
| 20 | CephRBD          | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 21 | CephRBD          | No             | K8s Flexv              | REX-Ray           | {code} by Dell EMC   |
| 22 | CIFS             | No             | DVDI                   |                   |                      |
| 23 | CIFS             |                | K8s Flexv              |                   |                      |
| 24 | Cinder           | Yes            | DVDI                   | REX-Ray           | {code} by Dell EMC   |
| 25 | Cinder           | No             | DVDI                   |                   |                      |
| 26 | Cinder           | No             | K8s In-Tree            | K8s Volume Plugin |                      |
| 27 | Cinder           | No             | K8s Flexv              | REX-Ray           | {code} by Dell EMC   |
| 28 | CoprHD           | No             | DVDI                   | OpenStorage       | Portworx             |
| 29 | Device Mapper    | No             | DVDI                   | Contiv            | Rancher              |
| 30 | Diamanti         |                | K8s Flexv              |                   |                      |

### 5 plugins for AWS EBS being maintained

### Variations of storage interface: Is this good for the community?

Users Container Orchestrators Storage Providers



#### **CSI:** Goals

The Container Storage Interface (CSI) is modeled on the successful OCI and CNCF sponsored CNI interoperability initiatives in the container and network space respectively.

Its goal is to provide a *vendor neutral*, curated specification that allows standardized storage plugins to be published and utilized across multiple container orchestrators, including Mesos and DC/OS.



#### CSI: Overview

- Control plane interface
  - CSI "steps aside" after wiring volume to container
     not a bottleneck in the data IO
     plane
  - Flexible deployment
- Focus on volume lifecycle
  - Create
  - Publish/Unpublish (to nodes, to containers)
  - Destroy
- Service-oriented
  - Long running
  - gRPC; CO is a client of plugin services



### **CSI:** Configuration / Operation

- CSI spec focuses on *protocol* over operational concerns
- Minimal deployment requirements
  - gRPC endpoint as UNIX socket\*
  - location via CSI\_ENDPOINT envvar
- Packaging guidelines / recommendations (optional)
  - vendor implementations packaged as "plugins"
  - plugins should expect to be supervised
  - plugins should expect to be isolated



### **CSI:** Plugin Composition

- 3 core gRPC services
  - Identity
  - Controller
  - Node
- Flexible composition
  - Identity+Controller+Node (headless)
  - Identity+Controller
  - Identity+Node



# CSI integration: option #1



### CSI integration: option #2



Plugin

### **CSI: Volume Lifecycle**

- CO provisions volumes
  - $\rightarrow CSI$  "attach to node"
  - $\rightarrow CSI$  "mount vol in CT"
- Plugins advertise support for lifecycle ops via \*Capabilities
  - Create/Delete Volume
  - Controller Publish/Unpublish





### **CSI: Identity Service**

GetSupportedVersionsGetPluginInfo



#### **CSI:** Controller Service

- ControllerGetCapabilities
- CreateVolume, DeleteVolume
- Controller { PublishVolume, UnpublishVolume }
- ListVolumes
- ValidateVolumeCapabilities
- GetCapacity

#### **CSI: Node Service**

- ProbeNode
- Node { PublishVolume, UnpublishVolume }
- GetNodeID
- NodeGetCapabilities

### Mesos Integration with CSI



#### • New Concept: Resource Provider (RP)

- An interface for providing resources to Mesos
- Can be both *Local* and *External*
- Agent can be viewed as a Local RP
- Why introduce RP?
  - Allow customization and extension on Resources
  - Support external resources (not tied to an agent)



### Storage Resource Provider

• Introduce a first class Storage Resource Provider

- Talk to CSI plugins
- Expose "disk" resources
- Handle operations (e.g., volume provisioning)

#### Goal

 Storage vendors just need to give Mesos the CSI plugin Docker image name, and Mesos will handle the rest.



# Mesos CSI Integration (Mesos 1.5 & 1.6)



### Mesos Roadmap on Storage Support

- Local Resource Provider (LRP) integration
- Storage LRP w/ CSI integration
- External Resource Provider (ERP) integration
- Storage ERP w/ CSI integration
- Epic: https://issues.apache.org/jira/browse/MESOS-7235
- LRP support is targeted for Mesos 1.5
- ERP support is targeted for Mesos 1.6



Community: Who is involved with CSI



### **CSI** Roadmap: Beyond intro release



Considering these - priority tbd, your feedback encouraged:

- Snapshot support •
- Volume resizing ٠
- Quota ۲
- ٠
- Windows OS/container support User ID & credential passthrough to storage provider •

This is deemed out of scope - up to orchestrator platform to implement, differentiate

Storage class (aka profiles) ٠



### Community: How to get involved



zoom

github: spec, sample code, issue tracking
 <u>https://github.com/container-storage-interface</u>

online 1 hour meeting every 2 weeks

<u>https://zoom.us/j/790748945</u>

#### • notes:

https://docs.google.com/document/d/1-oiNg5V\_GtS\_JBAEViVBhZ3BYVFlbSz70hreyaD7c 5Y/edit#heading=h.h3flg2md1zg

• recorded, see notes for link

google+ group for mailing list communication

<u>container-storage-interface-community</u>





### Mesos programming abstraction



- Framework
- Resource/Offer
- Task
- Executor

# A typical Mesos framework





27

### Containerizer and isolators (0.18, 2014)



- Pluggable architecture
- **Isolators** (lifecycle hooks)
  - cgroups/cpu
  - cgroups/mem
  - ..
- Launchers (process mgmt)
  - linux (cgroups & ns)
  - posix
  - windows

# Current list of isolators

- environment\_secret
- appc/runtime
- cgroups/blkio
- cgroups/cpu
- cgroups/cpuset
- cgroups/devices
- cgroups/hugetlb
- cgroups/mem
- cgroups/net\_cls
- cgroups/net\_prio
- cgroups/perf\_event
- cgroups/pids
- disk/du
- disk/xfs

- docker/runtime
- docker/volume
- filesystem/linux
- filesystem/posix
- filesystem/shared
- filesystem/windows
- gpu/nvidia
- linux/capabilities
- namespaces/ipc
- namespaces/pid
- network/cni
- network/port\_mapping
- posix/cpu
- posix/mem

- posix/rlimits
- volume/host\_path
- volume/image
- volume/sandbox\_path
- volume/secret

### Native Docker image support (0.28, 2016)

![](_page_29_Figure_1.jpeg)

### Adopting container standards

- Container images
  - Docker
  - AppC
  - OCI image spec
- Container network
  - CNI
- Container storage
  - DVDI
  - CSI

![](_page_30_Picture_10.jpeg)

Supported through pluggable interfaces in MesosContainerizer

# De facto container standard

![](_page_31_Figure_1.jpeg)

### We need true container standards!

- Stable interfaces
- Backward compatibility
- Multiple implementations
- Vendor neutral
- Interoperability

# Ideal world

**REX-Ray** 

Openly serious about storage

![](_page_33_Picture_1.jpeg)

Network Plugin (libnetwork)

CALICO

# Ideal world

![](_page_34_Figure_1.jpeg)

# Ideal world

![](_page_35_Picture_1.jpeg)

#### $\underset{\textbf{Registry API}}{\textbf{Registry API}} \rightarrow \textbf{Container Image Spec}$

![](_page_35_Figure_3.jpeg)

### Standards we need for containers

- Image
- Networking
- Storage
- Runtime
- Metrics

•

### Standards we need for containers

- Image
- Networking
- Storage
- Runtime
- Metrics

### Container image spec

#### Scope

- How to package application bits into images
- How to package application configs into images
- How to store and transfer images
- How to unpack images to get application bits and configs

### **OCI: Open Container Initiative**

- OCI image spec
  - <u>https://github.com/opencontainers/image-spec</u>

![](_page_39_Picture_3.jpeg)

### Mesos will support OCI image spec (soon)

![](_page_40_Figure_1.jpeg)

Will be supported in **MesosContainerizer** 

Pluggable container image format

# Container networking spec

#### Scope

- How to connect containers
- How to allocate IP Addresses
- How to enforce security policies
- How to isolate performance
- How to provide quality of service
- How to balance network traffic

# **CNI: Container Networking Interface**

- A simple CLI based interface
- Container orchestrator should invoke the CLI commands
  - Before container starts
  - After container terminates
- Adopted by major container orchestrators and network vendors
  - Recently joined CNCF
  - <u>https://github.com/containernetworking/cni</u>

![](_page_42_Picture_8.jpeg)

# **CNI: Container Networking Interface**

![](_page_43_Figure_1.jpeg)

- Each plugin implements two CLI commands:
  - ADD: Attach network to the network namespace
  - DEL: Detach network from the network namespace
  - Pass config using arguments and environment variables

# Mesos supports CNI

![](_page_44_Figure_1.jpeg)

### Container storage spec

#### Scope

- How to Create/Destroy volumes
- How to Attach/Detach volumes
- How to Mount/Unmount volumes
- How to create snapshots
- How to restore snapshots

# **CSI:** Container Storage Interface

- Joint work between major container orchestrators
  - Mesos, Kubernetes, Docker, Cloud Foundry
  - <u>https://github.com/container-storage-interface</u>
- The goal of CSI in v1.0
  - One storage plugin works for all COs
  - Support dynamic provisioning
  - Support both local and remote storage
  - Support Mount and Block volumes

![](_page_46_Picture_9.jpeg)

# Highlighted new features

- General nesting support
- Remote debugging support

### Why nested container?

![](_page_48_Picture_1.jpeg)

#### Sidecar pattern

### Why nested container?

![](_page_49_Picture_1.jpeg)

#### **Transient Container**

# Why nested container?

![](_page_50_Figure_1.jpeg)

#### **Hierarchical Container**

### MesosContainerizer supports nesting

- Depth > 2!
- Volume sharing with siblings
- Fully compatible with other features

![](_page_51_Figure_4.jpeg)

# Use nesting to support debugging!

![](_page_52_Figure_1.jpeg)

# Remote debugging support

- Similar to `docker exec` and `docker attach`, but can be done remotely
- Fully integrated with Mesos authn/authz
- Leverage nested container support

# Future Roadmap

- Standalone mode
- Host port isolation
- PAM module support
- Unified artifacts store
- Seccomp and SELinux
- LXC support
- VM support
- User namespace
- •

# Summary

- Containerization in Mesos
  - Stable, in production for years
  - Option to not rely on Docker daemon
  - Pluggable and extensible
  - Embracing container standards

![](_page_55_Picture_6.jpeg)